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Abstract  

The specific properties of the range of possible 
electron-density values may serve as useful additional 
information for the determination and refinement of 
structure-factor phases. Fourier synthesis histograms 
(showing the spectra of frequencies of different 
possible values) produce the most adequate repres- 
entation of these properties. The mathematical back- 
ground and practical uses of these histograms are 
discussed. The investigation provides new informa- 
tion on some traditional methods of phase 
refinement, including density-modification pro- 
cedures, maximization of Cochran's integral value 
and other techniques. 

I. Introduct ion 

As conventional X-ray experiments do not measure 
all the quantities necessary to calculate the electron- 
density distribution, it is necessary to find additional 
information on the structure under investigation to 
obtain the desired supplementary data. Such 
information may result from additional experiments 
on the particular structure and its modifications (e.g. 
multi-wavelength experiments or use of intensities 
from heavy-atom derivatives) or from general 
features of a class of structures (e.g. standard values 
for bond lengths or bond angles) or even from basic 
scientific concepts such as the atomic nature of 
matter. In the last two cases the additional informa- 
tion may usually be expressed in the form of mathe- 
matical restrictions on parameters connected with 
the structure studied, e.g. penalty functions for bond- 
length deviations, Sayre's equations for structure- 
factor values and so on. This paper gives the 
mathematical background for a class of methods 
which use the additional information contained in 
restrictions on the range of possible values for the 
electron-density distribution function. 

Here we consider the cases in which we do not 
know all the necessary structure factors F,.exp(i~,,) to 
calculate the Fourier synthesis of desired resolution 

1 
~, F~exp(i~os)exp[-2zri(s,r)] (1) 
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and want to find out the unknown data. These cases 
may occur when (i) the structure-factor modulus Fs is 
known, but the phase value ~0s is known only 
approximately and we wish to refine its value; (ii) Fs 
is known, but ~0~ is unknown and we want to 
determine its value; (iii) both F~ and ~,s are unknown. 
The methods described below are suitable with slight 
modification for all these cases, and so, rather than 
considering the particular cases, we will discuss the 
general problem of improvement of the structure- 
factor set. 

For the last case, i.e. when both F~ and ~o~ are 
unknown, two remarks are worthwhile. First, in this 
paper we refer to the situation when a relatively 
small number of structure factors are unknown both 
in modulus and phase (e.g. {F~} are unmeasured for 
experimental reasons). Second, the calculation of 
both Fs and ~os values for a number of reflections 
with unknown moduli is a common practice during 
improvement of an electron-density map p(r), taking 
all p values (at the nodes of a fine grid) as indepen- 
dent variables and applying some restrictions. In this 
case the modified map contains non-zero structure 
factors not only at the nominal resolution but up to 
the resolution of double the grid spacing. 

This paper discusses the additional information 
arising from the specific properties of the range of 
possible values for electron-density Fourier syntheses 
(1). A number of approaches to the use of these and 
other properties of the density range have been 
suggested. The most widely used property has been 
non-negativity of the electron-density distributions. 
It was used explicitly in the derivation of the Karle- 
Hauptman inequalities (Karle & Hauptman, 1950) in 
the maximum-determinant (Tsoucaris, 1970) and 
other methods (Biraud, 1969; Davies & Rollett, 
1976), or implicitly in maximum-entropy approaches 
(Gull & Daniel, 1978). The more extended restric- 
tions such as Pmin < p(r) < Pm.~x (with prescribed Pmi, 
and Pm~x values) or p ( r )={0  or l} (Vainstein & 
Khachaturyan, 1977; Cannillo, Oberti & Ungaretti, 
1983) were also used. 

Another class of methods utilizing the knowledge 
of which values must be present on electron-density 
maps are the numerous density-modification 
methods (Podjarny, Bhat & Zwick, 1987) in which p 
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values are replaced by 'more correct' values and 
improved phase values are calculated. The modifi- 
cation may be performed in accordance with the 
particular p value [e.g. pmod = 0 if p < 0, or pm,,d = 
3p 2 -  2p 3 (Collins, Brice, La Cour & Legg, 1976) if 
0 < p < 1] or be based on the grid-point position in 
the unit cell [e.g. pm°d(r)= 0 if r belongs to the 
solvent region]. 

A better way to reflect the constraints on the 
possible values of the function p(r) is to specify not 
only which values the function can have but also 
how frequently each of these values appears. Several 
different independent approaches to using the spec- 
tra of density frequencies corresponding to protein 
crystals ('histograms') have been suggested in recent 
years (Lunin, 1986, 1988; Harrison, 1988; Luzzati, 
Mariani & Delacroix, 1988; Zhang & Main, 1990a). 
Such histograms contain all the information used in 
the structure-factor improvement methods men- 
tioned above and therefore have all the potential 
abilities of these methods. Furthermore, they hold 
much-more-detailed information, so that utilizing 
these methods can give additional routes to 
structure-factor improvement and supplement the 
most commonly used methods. 

In §2 we introduce strict definitions of our 
methods. In §3 we discuss ways of obtaining the 
standard histogram for the desired synthesis before 
all the necessary structure-factor values have been 
determined. This is followed in ~4, 5 and 6 by a 
discussion of how to exploit the information inherent 
in a histogram for structure-factor improvement. 
Computational aspects of the suggested approaches 
are outlined in §7, and §8 covers some practical 
applications. 

Although in practical applications the information 
contained in a histogram must be used together with 
all the other available additional information, in this 
paper we shall restrict ourselves solely to histogram 
information in order to show how histograms alone 
can improve structure factors. 

2. The histogram of a finite-resolution Fourier 
synthesis 

This paper discusses the information which may be 
extracted from the range of available values of the 
electron-density distribution function. The most 
adequate representation of this information for a 
function p(r) defined in a unit cell is the Lebesgue 
measure generated by this function. We start, how- 
ever, with a more simple approach which can be 
easily realized in computer practice. 

2.1. Values.frequency spectra 

The most direct approach to represent how fre- 
quently a function takes each of its values is as 

follows. Let us introduce a uniform grid in the unit 
cell V, and let {p/}U= ~ be the set of values calculated 
at the grid points. Let us split the interval (Pmin, Pmax) 

of the values into K equal parts (bins) and for each 
bin determine how frequently values {p/} fall into the 
bin 

~'k = nk/N. (2) 

Here nk is the number of grid points such that the 
corresponding Pi value belongs to the kth bin, i.e. 

P m i n  "{" ( J  - -  1 ) Pro., - Pmin _< P/< Pmin + j  Pmax -- Pmin 
K K ' 

(3) 

and N is the total number of grid points. We call the 
spectrum (distribution) of frequencies {bk}~5=~ the 
histogram corresponding to the function p(r). 

Sometimes it is more convenient to deal with the 
normalized frequencies 

Uk = nk/(AkN). (4) 

Here Ak denotes the length of the kth bin. In this 
case the probability of the p value at a randomly 
chosen grid point falling into the kth bin is UkAk. 

2.2. Histograms and cumulative .['unctions 

The frequencies Uk and bk depend, strictly speak- 
ing, not only on the p(r) function, but also on the 
unit-cell grid and the manner in which the bins are 
introduced. To avoid this dependence we may intro- 
duce the Lebesgue measure on the range of p(r) 
values, i.e. introduce the cumulative function 

N(t) = mes{r:p(t) <_ t}/Vc~u. (5) 

(Hereafter {r: J} denotes all the points in the unit cell 
satisfying the conditions ~; mes/2 is the volume of the 
set S2 in the unit cell and Vc~, = mes V is the unit-cell 
volume.) We will consider further p(r) functions to 
be represented as sums of finite Fourier series (1). In 
this case there is a derivative 

u(t) = dN(t)/dt ,  N(t) = J" u(r)dr. (6) 

Hence, an equivalent way of introducing the 
Lebesgue measure is to define the density of the 
measure u(t). 

To avoid confusion between different uses of the 
term 'density' we will define the density of the 
measure u(t) as a histogram corresponding to the 
p(r) function studied. This notation is not in contra- 
diction with the previous use of the term histogram, 
as the normalized frequencies (4) are simply approxi- 
mations of the values u(tk) calculated at the middle tk 
of the bins 

•(tk) = lim Uk. (7) 
A,---..O,N-* o o  
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The use of v(t) to represent information on the 
range of possible values is more convenient when 
considering theoretical questions while in practice we 
have to deal with an approximate representation, e.g. 
with the frequencies {Vk}. 

Using (4) to calculate approximate values for v(t) 
has some disadvantages. The most important is that 
the frequencies {Vk} depend on the p bin and not on 
the precise p value. This means that small deviations 
in {pj} which do not change the bins result in the 
same frequency values, and therefore the gradient of 
Vk with respect to {p j} is equal to zero almost every- 
where, so it cannot be used when improving the 
structure-factor set from a minimal principle (see 
§7.1 below). However, we can improve the situation 
by using another formula to calculate approximate 
v(t) values. For any function ,~(p) and any t the 
following formula is valid 

(1/Vceu)fA[t- p(r)]dV, = ~ A(t -  ~-)u(7")d~', (8) 
V - -oo  

which expresses the equality of averaging through 
space and with respect to the measure. As ,~(t) tends 
to Dirac's 6 function we obtain 

u(t)=(1/Vce,) lim f,~[t-p(r)]dV,. (9) 
A(t)-.8(t) V 

Introducing a uniform grid in the unit cell and 
applying the simplest numerical formula to calculate 
the integral we get a set of approximate formulae for 
u(t) values 

N 

u(t) -" (1/N)2 A(t -  pj) (10) 
j = l  

if ,~(t) is close enough to the 6 function. Formula (4) 
is a particular case of (10) corresponding to 

1/A for0___t___A, 
,~(t) (1 1) 

t 0 otherwise. 

If ,~(t) has a non-zero derivative inside the interval, 
the values u(t) defined by (10) have non-zero 
gradients with respect to {oj}. In practice we used 
(Lunin, 1988) a simple ,~(t) form 

-(1/K2)ltl + 1/K for Itl--- K 
AK(t) (12) 

t 0 otherwise. 

2.3. Histograms corresponding to the molecular 
region 

Zhang & Main (1990a,b) suggested calculating 
frequencies (2) or (4) for the points belonging to the 
molecular region only. This has some advantages 
when predicting the standard histogram and 
improving phases in the case of known molecular 
boundaries (see §3.3 below). Nevertheless it is 
difficult to use such histograms at the early stages of 

structure determination when the molecular 
boundaries are not known reliably. 

2.4. Histograms for finite-resolution electron-density 
syntheses 

Fig. 1 shows a typical histogram corresponding to 
a middle-resolution electron-density synthesis for a 
protein. The asymmetry of such histograms was 
clearly suggested as a criterion of phase correctness 
by Podjarny & Yonath (1977). It must be noted that 
this property was used indirectly by Cochran as early 
as 1952 (see §6.2 below). 

It is worth noting that a negative-value wing is 
present on the histogram corresponding to Fourier 
synthesis calculated with exact structure-factor 
values. Negative-value regions appear in the syn- 
theses due to series-termination effects and cannot be 
removed without changing the resolution or distort- 
ing the phase values. Furthermore, the deepest 
negative 'pits' are mainly concentrated in the 
molecular region and may be used in the search for 
molecular boundaries (Urzhumtsev, Lunin & 
Luzyanina, 1989). 

The most valuable feature of the histogram is that 
it depends on the level of phase error when calcu- 
lating the synthesis. Fig. 2 shows histograms corre- 
sponding to different error levels. This sensitivity of 
histograms to phase errors and to the lack of data 
(Lunin, 1988) used in calculating the synthesis allows 
the histogram to be used as an indicator of the 
correctness of the phases. We discuss ways in which 
histograms may be used for structure-factor 
improvement in ~4 below. 

3. Histogram prediction 

To use the information inherent in an electron- 
density histogram for phase determination or 
refinement we must know the 'true' histogram corre- 

7J(t) 

1. 
Fig. 1. A typical histogram for protein electron-density synthesis 

at 4 A resolution. 
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sponding to the synthesis (1). As there is no direct 
experimental way of determining this 'true' histo- 
gram, it has to be predicted from general features of 
the class of maps to which the structure under study 
belongs. We briefly discuss below the main 
approaches proposed for protein electron-density 
histogram prediction. Two comments are relevant: 
(1) the histogram depends strongly on the resolution 
of the synthesis, so the resolution employed when 
using or predicting the histogram must be kept in 
mind; (2) the histogram also depends on the overall 
temperature factor. 

3.1. Gaussian model for the h&togram 

Harrison (1988) suggested the use of a Gaussian 
curve as a model for the histogram. At first sight this 
approximation seems too crude and incapable of 
reproducing the asymmetry of the real histogram. 
Nevertheless, the solvent influence makes the low- 
resolution histograms more similar to Gaussian 
curves than the high-resolution histograms. There- 
fore, at low resolution such a histogram model may 
possibly be useful since it restricts density values that 
are too high or too low. 

3.2. Use of similar (homologous) objects to predict the 
histogram 

The initial concept of histogram prediction (Lunin, 
1988; Luzzati, Mariani & Delacroix, 1988) was to use 
the histogram calculated from a similar sample. If 
the atomic coordinates for such a sample are known, 
then it is possible to calculate the corresponding 
structure factors, the synthesis at the desired resolu- 
tion and its histogram. The most difficult question 
when applying this approach is 'What is a similar 
object when predicting the histogram?' In our experi- 
ence (see §3.3 below) 'similar' in this context means 
that the known sample has the same fraction of the 

Z2(t) 

0 1. 

Fig .  2. H i s t o g r a m s  c o r r e s p o n d i n g  to  4 / k  r e s o l u t i o n  s y n t h e s e s  
calculated w i t h  d i f f e r e n t  m e a n  p h a s e - e r r o r  levels:  - -  exact 
p h a s e s ;  - -  + - -  - 150; - - o - -  - 36°; - -  x - -  - 90 °. 

unit-cell volume per atom of the protein molecule 
and the unit-cell dimensions are similar to those of 
the crystal under investigation. 

3.3. Prediction of histograms for the molecular region 
only 

It has been established that if we restrict ourselves 
to the molecular region only then all histograms of 
protein electron-density syntheses are similar (Main, 
1990a,b; Lunin & Skovoroda, 1991). (Here, of 
course, we mean syntheses at equal resolutions.) An 
empirical formula describing this histogram has been 
suggested by Main (1990a). 

3.4. The two-component h&togram model 

It has been shown for proteins (Lunin & 
Skovoroda, 1991) that a large variety of histograms 
calculated for the whole unit cell may be described 
by the two-component formula 

v(t) = (Fooo/Vce,)v°(t) + q°(t). (13) 

Here v°(t) and q°(t), for any particular resolution, are 
standard distributions, similar for all the Fourier 
syntheses. The standard distributions v°(t) and q°(t) 
may be determined from the condition that (13) 
should be as accurate as possible for a set of histo- 
grams corresponding to proteins of known atomic 
structures. These standard distributions may be 
assumed as being calculated for the molecular and 
solvent regions separately. 

4. Structure-factor improvement as a minimal 
principle 

Let us now assume that we know the histogram 
vtrUe(t) which corresponds to the synthesis (1) calcu- 
lated with the true structure-factor values. We call 
this ideal histogram the standard histogram. We will 
discuss below how this histogram may be used for 
improvement of a structure-factor set. 

4.1. Structure-factor improvement from a m&imal 
pr&ciple 

The most direct way to exploit the histogram 
information is to find out which unknown structure- 
factor values result in a Fourier synthesis histogram 
closest to the standard one. Let us specify some 
numerical criterion of histogram closeness, e.g. 

oo 

Q h i s t  = f W(t)[vca'c( t )  -- vtrue(t)] 2dt ,  ( 1 4 )  
- - o o  

where w(t) denotes a weighting function. Then for 
any set of trial values for unknown structure factors 
we can merge trial and known values, calculate the 
corresponding Fourier synthesis and its histogram, 
and compare this histogram with the standard one 
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by means of (14). In this way we define the function 
Qh~st depending on trial structure-factor values, and 
the best values may be defined as ones which mini- 
mize the discrepancy (14). The set of trial values may 
be different in different situations. It may include 
phase values for some reflections or both moduli and 
phases for others, but the main consideration is the 
same, i.e. to minimize the discrepancy Qhist. 

The advantage of such an approach is not only the 
simplicity of its formulation, but also the possibility 
of including all the other additional information 
represented as a minimal principle for some target 
function in the process of structure-factor improve- 
ment. For example, Sayre's equations (Sayre, 1952, 
1972, 1974) may be taken into account together with 
the histogram information if we define the best 
values for unknown structure factors as those mini- 
mizing the compound criterion 

ocom= t~Ohis t + fl~]Fsexp(i~os)- 0(s) 
$ 

× 7.Fs_uexp(iq~s_u)Fuexp(i~o.)[ 2. (15) 
u 

4.2. The use of a priori phase and histogram 
information 

Another possible type of additional information 
which can be used together with the histogram 
information is the probability distributions either for 
individual phases or for some phase invariants. 
There are two known ways of representing this 
information as a minimal principle. The first is to 
introduce a likelihood function (supposing mutual 
independence of the distributions) and maximize this 
function or its logarithm. Examples of this approach 
are minimization of the compound criterion (Lunin 
& Urzhumtsev, 1985) 

o c o m =  O, Qhis t + f l Z ( A s c o s q 9  s + Bssin~0s 
s 

+ Cscos2~os + Dssin2~,s) (16) 

where As, Bs, Cs, Ds are the coefficients of 
Hendrickson & Lattman (1970) for the correspond- 
ing probability distribution, or the proposal of 
Hauptman (1989) for using phase-invariant distribu- 
tions in a similar manner. [See also Bricogne & 
Gilmore (1990) for a more thorough analysis of 
likelihood-function-based approaches.] 

The other approach suggested by Ha~ek (1974, 
1984) involves (instead of trying to obtain the most 
probable value for every phase invariant) the use of 
phase-invariant probability distributions on the 
whole in a manner similar to that described above 
for Fourier synthesis histograms. The main aim of 
the method is to find out the phase values which 
minimize the discrepancy between the calculated 
invariant-value distribution and the theoretical one. 

This means that the best phases do not produce the 
most probable invariant values, but every invariant 
value appears as frequently as it is prescribed by the 
theoretical distribution. This results in a criterion for 
the minimal problem 

o o  

QCOm = a f w(t)[uca'c(t)-- utrue(t)]2dt 
- -  o o  

+ fl ~ u(t)[~c~'c(t) -/ztrue(t)]2dt (17) 
- - o o  

where u(t) denotes the histogram for electron-density 
values and #(t) the histogram for phase-invariant 
values. 

4.3. The use of  positional information together with 
histogram information 

If the information on the molecular boundary is 
present it can be taken into account by making use 
of the two separate histograms for the Fourier syn- 
thesis calculated through the molecular and solvent 
regions (Harrison, 1988). In this case the minimized 
function may have the form 

o o  

QCOm a f w(t)[u~,~,~(t) true 2 = - Umol(t)] dt 

o o  

+/3 f c,,~ true 2 u(t)[~'so, ( t ) -  V~o, (t)] dt (18) 
- -  o o  

where Vmot(t) and U~o~(t) are histograms describing 
the frequencies of Fourier synthesis values in the 
molecular and the solvent regions respectively. 

5. A system of equations for structure factors: 
fixed-point representation 

In this section we will deduce equations which 
restrict the values of structure factors of a function 
with the prescribed histogram /.'true(t) and discuss 
ways of solving them. 

5.1. The functional equation for functions possessing 
the prescribed histogram 

First, we will find out the functional relationship 
for functions having the given histogram. To be 
more precise, we will show that a function p(r) has 
the histogram ptrue(t) if and only if the function 
satisfies the equation p = r[p] where ~- is the special 
functional transformation. The transformation is 
defined by the function utrue(t) and varies for differ- 
ent histograms. 

Suppose the histogram utrue(t) is known and we 
look for a transformation r: p._,pm such that for any 
function p(r) the modified function pm has the histo- 
gram U'rue(t). There may be a number of such trans- 
formations, but if we demand additionally that the 
transformation should not distort the isosurfaces of 
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p(r) [i.e. p'"(r l )> p'"(r2) if and only if p ( r l )>  p(r2)] 
then (Lunin & Vernoslova, 1991) a unique trans- 
formation of this kind exists which has the form 

p(r)--,pm(r) = Ap[p(r)]. (19) 

The modifying function a~,(t) satisfies the equation 

NtrUe(A,) = N~'~(t), (20) 

where the cumulative functions Ntr~(t) and N~"~(t) 
are calculated as 

N°b~(t)= j" vtrUe(x)dx, 
- - i  a o  

N~'l~(t) = f v~"'~(x)dx. (21) 
- -  o e  

Here v~'c(t) is the histogram corresponding to the 
function under modification p(r). It must be 
emphasized that in contrast to common density 
modification (Podjarny, Bhat & Zwick, 1987) the 
modifying function Ao(t ) depends on both the desired 
histogram vtrue(t) and the function p(r) being 
modified, i.e. for different functions p(r) the 
modifying functions Ap(t) are different. [It must also 
be noted that it is possible to consider transforma- 
tions of a function p(r) distorting its isosurfaces and 
to produce other types of equations for structure 
factors, but such considerations lie beyond the scope 
of this paper.] 

It follows from (19)-(21) that if the function p(r) 
itself has the histogram V~ru~(t) then Ap(t) - t and the 
transformation "rip] does not change this function, 
i.e. the function satisfies the functional equation p = 
-rip]. Conversely, if the last equation is valid, then 
a , , ( t )  - t and therefore N~ru~(t) -- NC~'~(t) and hence 
virus(t) = V~"'~(t). This means that the function p(r) 
has the histogram vtrue(t). Thus, in order that the 
function p(r) has the histogram v ~ ( t ) ,  the func- 
tional equation 

p(r) = -r[p](r) (22) 

has to be satisfied. 

5.2. Histogram-specification and histogram-matching 
methods" 

Equation (22), satisfied only by functions with the 
P°bs(t) histogram, is equivalent to the set of corre- 
sponding equations for structure factors 

Fsexp(iq~s) = /,{p'"(r)}, (23) 

where p'"(r)= Ap[p(r)] is the transformation [(19)- 
(21)] of the function (1) and /~{p'"(r)} denotes the 
s-indexed structure factor of pro(r). Here the right- 
hand side of every equation depends on all the 
structure factors of p(r). [Note that the left-hand side 
of (23) is equal to zero for s > 1/dmm if the histogram 
vtrue(/) corresponds to the resolution drain.] Assuming 
moduli values to be known from X-ray experiments, 

these equations may be considered as phase-value 
determination equations. 

The equations (23) may be split into 'phase' and 
'radial' parts 

q~s = arg[ ~%{p'(r)}], (24) 

I ,-~{pm(r)}l = F,. (25) 

(Here arg[z] means the phase of the complex number 
z.) The usual method of solution of such equations 
(Lunin, 1985) is to use the phase part (24) only and 
to solve them by the simple iteration method, i.e. the 
current phase values are used to calculate the right- 
hand side of (24) and the calculated values are taken 
as improved phases. In our case this means that the 
following procedure is repeated: (i) the Fourier syn- 
thesis is calculated with the current phase values; (ii) 
the synthesis modification [(19)-(21)] is performed; 
(iii) the phases of the modified function p"(r) are 
taken for the next cycle. 

It is easy to see that this scheme coincides in its 
main features with the 'histogram-specification' 
(Harrison, 1988) and 'histogram-matching' (Zhang & 
Main, 1990a,b) methods of phase refinement. 

It must be noted that while the complete system 
[(24)-(25)] is equivalent to the Fourier synthesis 
having the prescribed histogram vtrue(t), (24) alone 
does not have such a feature. This means that false 
'self-consistent' solutions which do not result in the 
desired histogram may arise when solving the set of 
equations (24) alone. However, we have not met such 
a situation in our tests. 

The iterative procedure is easier to implement on a 
computer than the minimization procedure but has a 
poorer convergence rate. Nevertheless, the inclusion 
of additional information in the iterative procedure 
may cause serious difficulties and necessitate compli- 
cated methods (Main, 1990a,b). 

5.3. The density-modification method 

The known histogram utrue(t) provides a stricter 
base for numerous density-modification methods 
(Podjarny, Bhat & Zwick, 1987). The computational 
algorithm of these methods is the iterative phase- 
redetermination procedure described above, but 
with the modifying function A(t) not depending on 
the function p(r) to be modified, or depending on its 
maximum value only. Different modifying functions 
have been suggested, but the two most widespread 
are the attenuation of negative values [A(t) = xt for t 
< 0, where K < 1 (Podjarny & Yonath, 1977)] and 
empirical transformation of the positive values [e.g. 
a(t) = 3(t/pm~x) 2 -  2(t/Pmax) 3 (Hoppe & Gassmann, 
1968; Collins, Brice, La Cour & Legg, 1976)]. 

To demonstrate the correlation with histogram- 
based methods the following test was performed. The 
4 and 1.5 A sets of structure factors were calculated 
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from atomic coordinates for cytochrome b5 
(Mathews, Levine & Argos, 1971). A series of syn- 
theses was then calculated with the exact moduli 
values, but with phase values containing random 
errors. The modifying functions ,~o(t) for the trans- 
formation [(19)-(21)] restoring the histogram ptrue(t) 
are shown in Fig. 3 for the case of the largest phase 
errors. The curves for lower error levels occupy 
intermediate positions between this transform and 
the identity one. For the 4 A resolution syntheses 
these curves have the two main features of the 
density-modification methods mentioned above, i.e. 
attenuation of the lowest values and a 3p 2 - 2p3-type 
transformation for middle and high values, but the 
strength of these features decreases with decrease of 
the phase errors. For the 1.5 A resolution syntheses 
these transformations set density values up to a 
0.2pmax value nearly equal to zero. Such a trans- 
formation is close to the '0 or 1' transformation 
(Cannillo, Oberti & Ungaretti, 1983) and to the 
transformation suggested by Shiono & Woolfson 
(1992). Thus 'classical' density-modification methods 
may be considered as those using (in an implicit 
form) the additional information contained in 
Fourier synthesis histograms, but which are less 
adapted to the particular error level. 

If p(r) has the form of Fourier synthesis (1) and the 
standard values {m~, ru~} of the moments are known 
these produce a system of equations for structure- 
factor values, which are an equivalent representation 
of the property of p(r) to have the histogram utru~(t) 

Fooo = mtl rue Vcell 

S'F 2 = m~rue(Vcell) 2 
$ 

~. F, Fs2Fs,exp[ i( ~ps, + q&2 + q~s) ] = mt3ru~( V~e,,) 3 
S I + $ 2 + $ 3 = 0  

Y~ F~,...Fs, exp[i(q~, +... + q~s,)] = m~,ru~(Vc~,) k. 
• ,+...+~,=o (29) 

The first two equations in (29) do not contain 
phase values, so the first two moments do not restrict 
possible phase values and cannot be used for phase 
determination. Nevertheless, these moments allow 
the Fooo value and the scale factor for {Fs} values to 
be defined, if they were measured on a relative scale. 

6.2. Simplified approaches: Cochran's integral 
maximization 

A simplified way of using the standard-moment 
values for phase improvement is to employ a small 

6. Moments-based representation of equations for 
structure factors 

6.1. Histograms and moments 

Another way of exploiting the information con- 
tained in a histogram is not to use the histogram 
itself, but rather some of its characteristics, e.g. the 
series of central moments 

o o  

mk= .1" t*v(t)dt, k = 0, 1, . . . .  (26) 
- - o o  

As v(t) has non-zero values in the finite interval 
(Pmin, Pmax) only, the moment of any order has a 
finite value and mk < C ( P m a x -  Pmin) k. Conversely, if 

m ® the series { J,}k = i is given and mk < Cx* for some C 
and K, then there is a unique distribution v(t) of such 
moments, which may be formally represented as 

o o  r ~ • k 1 ,--. Ox)  ] ,  
v(t) = ~--~. f  e x p ( - i t x ) [  5o--k--(-. mk jax .  (27) 

So the definition for a function p(r), the standard 
histogram vtrUe(t) or the standard values {m~, rue} of the 
moments are equivalent ways of presenting the 
information on p-value frequencies. 

Instead of using (26) to calculate the statistical 
moments, the integration of p(r) through the unit cell 
may be performed: 

mk = (1/Vc~,)fp(r)kd V,, k = 0, 1, . . . .  (28) 
V 

p mod  

1. 

)0/Pm.x 

(a) 
. . . . . . . . . . . . . .  

r ood  
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/P.,°, 
i i 

. 2  1 .  

(b) 

Fig. 3. Identity transform and density-modification function 
(--o--) for (a) 4 A and (b) 1.5 A resolution syntheses calcu- 
lated with random phase values. 
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number of moments or even just one of them. For 
example, Podjarny & Yonath (1977) established that 
the quality of a phase set is correlated with the value 
of the third moment m3 which is connected to the 
skewness of the histogram. So, they suggested the use 
of this value as an indicator of phase correctness. A 
more active approach is to maximize m3 by changing 
the phase values. This method is directly related to 
maximization of Cochran's (1952) integral 

( 1 / Vc¢n)fp(r)3d Vr = m 3. (30) 
v 

So, maximization of the integral in (30) may be 
considered as maximization of the skewness of the 
electron-density histogram. It must be noted that for 
arbitrary images the assumption of maximum skew- 
ness is not generally valid. Hence a more careful 
approach is to fit the calculated m 3 value to the 
standard one. 

Another approach based on the single fourth 
central moment /z4 

o e  

~£4--" f (t-m,)4u(t)dt=m4-4m3m, +6m2m 2 -  3m 4 
- - o o  

(31) 

was suggested by Luzzati, Mariani &: Delacroix 
(1988). They suggested the determination of the 
standard ~r ,e  value from compounds with known 
structures and then the use of the similarity of ~ 
and/~T 'e as the indicator of correctness of the phase- 
problem solution. 

7. Computational aspects 

Here we briefly discuss some computational prob- 
lems which arise when solving a minimal problem. 

7.1. Quasi-histograms 

For practical purposes the criterion (14) takes the 
form 

K 
Qhist = Z Wk(P~ a i c -  /]~rue)2, (32) 

k=l 

where {Vk} are approximations for v(t) values at the 
points tk (bin middles). We assume that (10) is used 
to calculate {v~ "~¢} because of the reasons mentioned 
in §2.2. 

The disagreement between v c"~¢ and /]true values 
has three sources. The first is the errors in structure 
factors and the purpose of Qhist minimization is to 
reduce these errors. The second source of dis- 
agreement is the replacement of the integral in (14) 
by the sum in (32). This difference is, however, small 
if the bin lengths are small. The third reason is the 
use of approximation (10) instead of (9). The 
accuracy of this approximation depends both on the 
grid in the unit cell for calculation of {,oj} and on the 
closeness of A(t) to the 8 function. If A(t) is far from 

8(0 the difference may be large, but it can be elimi- 
nated if we change from a comparison of histograms 
to a comparison of quasi-histograms (Lunin, 1988) 

K 
aqh = Y- Wk(tZCk "It-/zl,r"e) 2=¢" min. (33) 

kml 

Here {/~"~c} are calculated in accordance with (10) 
and {/z~ rue} are the values at the bin middles of the 
function 

p, t rue(t)= .~ A(/-7")/]truc(7")dr (34) 
- - o o  

calculated at the bin middles. This means that to 
check the structure-factor set we do not compare the 
histograms as they are, but rather some of their 
modifications. 

7.2. Fast differentiation algorithm 

It might seem that there could be significant diffi- 
culties in calculating the gradient for a complicated 
function depending on a large number of variables. 
However, a routine method exists (Kim, Nesterov & 
Cherkassky, 1984; Lunin & Urzhumtsev, 1985; 
Lunin, 1985) to develop for any function an 
algorithm allowing the calculation of all the com- 
ponents of the gradient in about the same time as a 
single-value calculation would take. Thus the only 
problem in local minimization is to find a fast 
algorithm for function-value calculation. 

7.3. The multi-minima problem 

The central questions in a minimal-problem solu- 
tion are those connected with the starting-point 
choice and multi-minima functions. The minimal 
problems mentioned above are not unusual. If we 
have approximate phase values they may serve as a 
starting point for refinement, but if we determine 
unknown phases the result may depend strongly on 
the starting point. Ways of choosing starting values 
for centric and acentric reflections have been dis- 
cussed previously (Lunin, 1988). 

The multi-minima nature of the minimized func- 
tion results in two problems. The first, namely the 
convergence to 'high' local minima, may sometimes 
be overcome by the use of the simulated-annealing 
method (Briinger, 1988) or by a descent from differ- 
ent starting points. A more difficult question arises 
when several very similar deep minima exist. As we 
compare calculated values with values containing 
some experimental errors or use some approxi- 
mations when deducing theoretical relations, the 
deepest minima may not correspond to the true 
solution. So the problem is not only that of finding 
the global minimum but also of searching for the 
additional criteria needed to pick out the true solu- 
tion from the admissible ones. 
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Our tests with phase refinement (Lunin & 
Vernoslova, 1991) have shown that if one starts from 
phases containing large errors it is easy to produce a 
new phase set resulting in a very 'good' histogram 
that is still incorrect. Similar results were obtained 
when discriminating random phase sets in accord- 
ance with the corresponding histograms (Lunin, 
Urzhumtsev & Skovoroda, 1990). It was established 
that the phase sets resulting in the true histogram 
may be incorrect. Therefore, the correct histogram is 
not the sole criterion guaranteeing the correct 
structure-factor value and some additional informa- 
tion is necessary. 

8. Applications 

We mention here briefly some examples of the use of 
the histogram technique in the structure-factor 
improvement problem. More detailed descriptions 
can be found in the original papers. 

8.1. Retrieval of both modulus and phase values 

Sometimes part of a low-resolution structure- 
factor modulus is not measured in the X-ray experi- 
ment. Elimination of such reflections from calcula- 
tions may produce significant distortions in low- and 
middle-resolution syntheses (Urzhumtsev, 1991). The 
method suggested (Lunin, 1988) for restoring both 
moduli and phases for such reflections was the mini- 
mization of the criterion (14) with respect to the 
unknown structure-factor values. The method was 
tested on subtilisin and used in studies of y-crystallin 
IIIb (Lunin & Skovoroda, 1991). 

8.2. Phase refinement and extension 

A test phase refinement for 2Zn pig insulin in the 
resolution range 3.0-1.5/k and a comparison with 
other methods was performed by Zhang & Main 
(1990a,b). A test phase refinement for cytochrome bs 
is described by Lunin & Vernoslova (1991). Harrison 
(1988) has described the use of the histogram tech- 
nique for phase refinement and extension for an 
asparaginase from Acinetobacter glutamininasificans 
at 4.2-3.2 A resolution. 

8.3. Direct phasing of low-resolution reflections 

Two methods for direct phasing of a limited 
number of lowest resolution reflections have been 
proposed. Luzzati, Mariani & Delacroix (1988), 
when investigating lipid-containing systems, sug- 
gested consideration of all possible phase sets (for 
centrosymmetric structures) and selection of the best 
set in accordance with its fourth histogram moment. 
A different approach was suggested by Lunin, 
Urzhumtsev & Skovoroda (1990). It consists of 

generating a large number of random phase sets, 
selecting the admissible ones in accordance with their 
histograms, performing a cluster analysis to separate 
admissible variants into clusters and averaging the 
variants in every cluster to produce a few possible 
phase-problem solutions. This approach was tested 
with an artificial structure and the structures of 
cytochrome b5 and Bence-Jones protein (Lunin, 
1991), and was used in work on the elongation factor 
G. 

Fig. 4 shows an example of the application of this 
approach to the experimental data for RNAse Sa 
kindly supplied by Mrs E. Dodson. The atomic 
model obtained by J. Srvcik was used for verification 
of the results. The protein crystallized in space group 
P212~2~ with a = 64.9, b = 78.32, c = 38.79 A, and 
the asymmetric unit contained two RNAse mol- 
ecules. In this test 39 experimentally measured 
structure-factor modulus values for RNAse corre- 
sponding to 16/~ resolution were used together with 
the histogram calculated using the atomic model of 
cytochrome b5. About 100000 random phase sets 
were generated and about 100 of these which resulted 
in good histograms were averaged to produce a 
Fourier synthesis. Both molecules contained in the 
asymmetric part of the unit cell can be clearly 
located in this synthesis. 

9. Concluding remarks 

The electron-density synthesis histogram carries the 
fullest information on the frequencies of possible 
density values. Therefore the use of such histograms 
is a further development of methods exploiting 
properties such as positivity, double-side bounded- 
ness, restriction of the density value (e.g. 0 or 1) and 
SO o n .  
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Fig. 4. A directly phased synthesis and an atomic model for 
RNAse Sa. Only atoms in the asymmetric part of  the unit cell 
are shown. 
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The use of histograms as a limiting factor in the 
phase-determination process sheds new light on some 
of the most widespread methods developed semi- 
empirically and provides a strong mathematical 
background for them. 

The use of histogram-closeness criteria [such as 
(14) or (17)] for some values connected with the 
structure under study instead of the request that 
every value should be as close as possible to the most 
probable one, produces a more statistically reliable 
distribution pattern. 

Test calculations have shown that the histograms 
are sensitive to errors in structure-factor values, so 
that some incorrect phase sets may be discriminated 
against due to their poor histograms. However, a 
true histogram used on its own does not guarantee 
the correctness of phase values. Therefore, histo- 
grams do not allow the unambiguous determination 
of phases and further investigations of phase sets 
resulting in good histograms are necessary. It may be 
noted that a histogram gives a one-dimensional curve 
as additional information and this is, of course, 
inadequate information for producing a three- 
dimensional set of structure-factor phases immedi- 
ately. These remarks do not discredit histograms as a 
tool for structure-factor improvement, but set 
reasonable boundaries for their use. 
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